Bayesian Shrinkage for Functional Network Models, with Applications to Longitudinal Item Response Data
نویسندگان
چکیده
Longitudinal item response data are common in social science, educational and psychology, among other disciplines. Studying the time-varying relationships between items is crucial for assessment or designing marketing strategies from survey questions. Although dynamic network models have been widely developed, we cannot apply them directly to because there multiple systems of nodes with various types local interactions items, resulting multiplex structures. We propose a new model study these temporal by embedding functional parameters within exponential random graph framework. Inference on such difficult likelihood functions contain intractable normalizing constants. Furthermore, number grows exponentially as increases. Variable selection not trivial standard shrinkage approaches do consider trends parameters. To overcome challenges, develop novel Bayes approach combining an auxiliary variable MCMC algorithm recently-developed method. our review sets, illustrating that proposed can avoid evaluation constants well detection significant items. Through simulation under different scenarios, examine performance algorithm. Our method is, knowledge, first attempt select variables
منابع مشابه
Bayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملApplications of Multidimensional Item Response Theory Models With Covariates to Longitudinal Test Data
متن کامل
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2021
ISSN: ['1061-8600', '1537-2715']
DOI: https://doi.org/10.1080/10618600.2021.1999823